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Recently we have introduced an inductive reasoning game of voluntary yearly vaccination to establish
whether or not a population of individuals acting in their own self-interest would be able to prevent influenza
epidemics. Here, we analyze our model to describe the dynamics of the collective yearly vaccination uptake.
We discuss the mean-field equations of our model and first order effects of fluctuations. We explain why our
model predicts that severe epidemics are periodically expected even without the introduction of pandemic
strains. We find that fluctuations in the collective yearly vaccination uptake induce severe epidemics with an
expected periodicity that depends on the number of independent decision makers in the population. The
mean-field dynamics also reveal that there are conditions for which the dynamics become robust to the
fluctuations. However, the transition between fluctuation-sensitive and fluctuation-robust dynamics occurs for
biologically implausible parameters. We also analyze our model when incentive-based vaccination programs
are offered. When a family-based incentive is offered, the expected periodicity of severe epidemics is in-
creased. This results from the fact that the number of independent decision makers is reduced, increasing the
effect of the fluctuations. However, incentives based on the number of years of prepayment of vaccination may
yield fluctuation-robust dynamics where severe epidemics are prevented. In this case, depending on prepay-
ment, the transition between fluctuation-sensitive and fluctuation-robust dynamics may occur for biologically
plausible parameters. Our analysis provides a practical method for identifying how many years of free vacci-
nation should be provided in order to successfully ameliorate influenza epidemics.
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I. INTRODUCTION

Recently, we have introduced a model that combines an
epidemic model of influenza with human cognition and vac-
cination behavior �1�. Using computational simulations, we
found that even without the introduction of pandemic strains,
severe influenza epidemics are to be expected. However, we
also found that these severe epidemics can be prevented
when certain incentive-based vaccination programs are of-
fered to the public. Here, we analyze our model by formu-
lating mean-field equations with added first order fluctua-
tions to describe the dynamics of the collective vaccination
behavior. Our analyses explain the numerical results and
identify incentive-based vaccination programs that are effec-
tive in preventing severe influenza epidemics.

In our model, individuals decide whether or not they
should vaccinate against influenza based upon their vaccina-
tion experiences. Therefore, individuals adapt to the past in-
fluenza epidemiology which, by the action of vaccination,
they had helped to determine. This continuous adaptation of
one’s behavior to predicted future collective behavior is
called inductive reasoning and applies in many instances
where logical deductive reasoning fails, either in principle or
due to bounded rationality �2�. Over the past decade, induc-
tive reasoning games have attracted increasing attention from
the statistical physics community. In particular, these games
have been applied to model financial markets where traders
decide to buy or sell a certain asset whose price is deter-
mined by their collective action �3–6�. However, until very
recently inductive reasoning games have not been applied to
theoretical epidemiology. Previous applications of game
theory to epidemiology have been based on deductive rea-

soning games. These have helped price vaccines �7� and pre-
dict the voluntary vaccination coverage �i.e., the proportion
of the population that gets vaccinated� for pathogens that
provide permanent immunity �e.g., smallpox and measles�
�8,9�. However, in the case of pathogens that do not provide
permanent immunity �e.g., influenza�, individuals need to
make repeated vaccination decisions under epidemiological
conditions that may not be sufficiently well known. Thus, it
may be assumed, in this case, that individuals make vaccina-
tion decisions based on their past experiences �i.e., use in-
ductive reasoning� rather than based only on the current epi-
demiology �i.e., use deductive reasoning�.

Since the influenza vaccine is effective only for 1 year,
individuals must decide every year whether to vaccinate or
not �10�. We assume that individuals act in their own self-
interest trying to avoid infection preferably without having to
vaccinate. The yearly vaccination coverage is determined by
the collective participation of the individuals. Compartmen-
tal models of influenza transmission �e.g., �11–13�� have
shown that there exists a critical coverage level such that: if
the coverage is below the critical level, an epidemic will
occur, otherwise epidemics will be prevented. In our model,
individuals vaccinate to avoid infection, but if the coverage
is larger than the critical level, they no longer need to vacci-
nate. When an individual does not vaccinate and the critical
coverage is not reached, they still have a nonzero probability
of avoiding infection due to peer vaccination �i.e., they are
protected by herd immunity�. We construct an individual-
level model that describes the adaptive dynamics of vaccina-
tion decisions in a population of noncommunicating indi-
viduals acting in their own self-interest �i.e., selfish
individuals�. Our model tracks individual-level vaccination
decisions and behavior as well as the resulting population-
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level variables, such as influenza prevalence and vaccination
coverage levels.

The outline of the paper is as follows. In Sec. II we de-
scribe and analyze our individual-level vaccination model
previously introduced in Ref. �1�. Our strategy is to derive a
dynamical system for the expected coverage given by the
model. Then, we address deviations from this mean-field
limit by discussing first order effects of the fluctuations. Us-
ing the same approach, in Sec. III we discuss analytical re-
sults regarding two cases of the basic model with superim-
posed vaccination incentives. Our analysis helps explain the
coverage dynamics observed in direct numerical simulations
of the model previously presented in Ref. �1�.

II. BASIC MODEL

A. Description

Deterministic models of influenza transmission, based on
ordinary differential equations �e.g., �11–14��, have shown
that there exists a critical coverage level below which an
epidemic is expected, otherwise epidemics are prevented.
These models predict that the average number of secondary
cases caused by one infectious case at the beginning of an
influenza epidemic ranges between 2 and 3 �14�. From these
values one obtains that the critical vaccination coverage
ranges between 0.50 and 0.67. Our inductive game includes
a simple model of this coverage threshold �15�. We denote
the coverage by p, the critical coverage by �c, and the prob-
ability of getting infected when the coverage is p by q�p�.
We assume that if p��c, then q�p� decreases linearly with
p, otherwise q�p�=0. This model is consistent with the fact
that unvaccinated individuals benefit from herd immunity.
Also, it is in qualitative agreement with results found from
the analysis of the susceptible-infected-recoved and
susceptible-exposed-infected-recoved transmission models
�1�. The nature of the results that we describe in this paper
does not depend on the details of q�p�. It only depends on the
fact that q�p� is strictly monotonically decreasing for p
��c and 0 for p��c. We now present the assumptions that
define our inductive reasoning game which we refer to as the
basic model.

�1� We consider a number of N individuals that every year
make vaccination decisions �16�. They are assumed to act in
their own interest and not to communicate their decisions to
each other. The sole interest of the individuals is to avoid
getting infected, preferably without having to vaccinate.

�2� To make their vaccination decisions, each individual
uses their past experience of vaccination outcomes. Thus,
individuals independently decide whether or not to vaccinate
using inductive reasoning.

�3� An individual remembers and weights their previous
vaccination outcomes with respect to their present vaccina-
tion outcome. A parameter s discounts the previous year vac-
cination outcome with respect to the outcome of the present
year �0�s�1�. For s=0, individuals completely ignore the
outcome of previous seasons and, as a consequence, do not
use inductive reasoning. If s were equal to 1, individuals
would not discount the previous vaccination seasons; there-

fore, the vaccination outcome of the present season �i.e., sea-
son n� would be as important as any of the previous seasons.

�4� We define a vaccination decision as a realization xn
�i� of

a Bernoulli variable with parameter wn
�i� that further depends

on a variable vn
�i�. i and n are positive integers; i

=1,2 , . . . ,N labels the individual and n�0 labels the season.
If individual i decides to get vaccinated in season n then
xn

�i�=1, otherwise xn
�i�=0. wn

�i� is the probability that individual
i vaccinates in season n. The variable vn

�i� characterizes
the provaccination experience of the ith individual �see de-
tails in assumption �7�� and determines wn

�i�. If s were 1, vn
�i�

would represent the number of years up to year n when in-
dividual i has benefited from vaccination. The domains of
the variables are as follows: xn

�i�� �0,1�, wn
�i�� �0,1�, and

vn
�i�� �0,1 / �1−s��.

�5� In year n, a set of N vaccination decisions is made
�xn

�i� ;1� i�N� that determines the provaccination experi-
ences up to year �n+1� of all the individuals �vn+1

�i� ;1� i
�N� which further determine �wn+1

�i� ;1� i�N�, the param-
eters of the Bernoulli variables in year �n+1�. Then, the set
of vaccination decisions in year �n+1� is obtained �xn+1

�i� ,1
� i�N�. Our inductive reasoning game is an array of sets of
vaccination decisions.

�6� The infection event of individual i in year n is de-
scribed by a variable zn

�i�. �If individual i got infected in sea-
son n then zn

�i�=1, otherwise zn
�i�=0.� The infection process is

as follows. If xn
�i�=1 then zn

�i�=0. If xn
�i�=0, then zn

�i� is a real-
ization of a Bernoulli variable with parameter q�pn�, where
pn=�i=1

N xn
�i� /N is the coverage achieved that year. That is, if

individuals vaccinate, they are fully protected, otherwise
they risk infection with probability q�pn�.

�7� �xn
�i� ;1� i�N� and �zn

�i� ;1� i�N� determine vn+1
�i� as

follows �see Fig. 1�. We have four cases: �a1� if xn
�i�=1 and

�c� pn, then vn+1
�i� =svn

�i�; that is, if individual i gets vacci-
nated in season n and no epidemic occurs, then the individual
considers that the vaccination was unnecessary; �a2� if xn

�i�

=1 and pn��c, then vn+1
�i� =svn

�i�+1; which means that if in-
dividual i vaccinates in season n and an epidemic occurs,
then the individual considers that the vaccination was neces-
sary; �b1� if xn

�i�=0 and zn
�i�=1 then vn+1

�i� =svn
�i�+1; that is, if

individual i does not get vaccinated in season n and gets
infected, then the individual considers that the vaccination
was necessary; and �b2� if xn

�i�=0 and zn
�i�=0 then vn+1

�i� =svn
�i�;

which means that if individual i does not get vaccinated in
season n and they do not get infected, then the individual
considers that the vaccination was unnecessary.

�8� The probability that an individual chooses to get vac-
cinated is updated as follows:

wn+1
�i� = vn+1

�i� /��1 − sn+1�/�1 − s�� . �1�

That is, an individual’s probability to get vaccinated in the
next season is given by the updated cumulative vaccination
experience. We have normalized vn+1

�i� by �1−sn+1� / �1−s� be-
cause this factor is the maximum possible value for vn+1

�i� if
individual i would have benefited from vaccination in all of
the n influenza seasons.
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B. Numerical results

Figure 2 shows numerics obtained by simulating the basic
model. We considered initial conditions that assign a random
vaccination probability for the first season to every indi-
vidual. Specifically, v0

�i�=0 and w0
�i� was uniformly distributed

between 0 and 1 for all i. Our initial conditions were chosen
to reflect the fact that at the individual level the likelihood of
vaccination may have varied considerably. Figures 2�a1,2�
show previously obtained dynamics �1� of the coverage and

the proportion of infected individuals for �c=0.6, respec-
tively. It can be seen that as p approaches �c from below, it
eventually fluctuates above �c, then abruptly drops below
�c, and the dynamics repeat; see �1� for a more in depth
discussion of the biological implications of these dynamics.
Figures 2�b1,2� show the dynamics of the coverage and the
proportion of infected individuals for a lower value of the
critical coverage �c=0.2. The dynamics is that of a period
two orbit and it is qualitatively different from that presented
in panels �a1,2�. We note however that influenza has a high
critical coverage and thus the behavior shown in panels
�a1,2� is more realistic. Our analysis aims to provide an un-
derstanding of the coverage dynamics in Fig. 2.

C. Analysis

We first derive and analyze a one-dimensional iterated
map in the variable � denoting the average coverage over
realizations of the game in the limit of large N. Then, we
discuss asymptotic aspects of the model that apply as the
population is large, yet finite. We thus define �n�	pn
; using
the definition of pn, we immediately have �n=�i=1

N 	wn
�i�
 /N,

and, since q is piecewise linear, 	q�p�
=q���. Following the
tree in Fig. 1 which describes the four cases of vaccination
evaluation given by assumption �7�, we obtain

Branch Expected population fraction Average v�i� update

�a1,2� �n 	vn+1
�i� 
 = s	vn

�i�
 + 1

− ���n − �c�
�b1� �1 − �n�q��n� 	vn+1

�i� 
 = s	vn
�i�
 + 1

�b2� �1 − �n��1 − q��n�� 	vn+1
�i� 
 = s	vn

�i�

�2�

where ��x� is the unit step function defined as

��x� = �1 if x � 0,

0 if x � 0,
� �3�

and q���, the probability of an unvaccinated individual get-
ting infected with influenza, is given by

q��� = �0 if � � �c,

− �q�0�/�c + q�0� if � � �c.
� �4�

Taking the weighted average over Eqs. �2�, we obtain

un+1 = sun + �1 − �n�q��n� + �n�1 − ���n − �c�� , �5�

where un denotes the average of 	vn
�i�
 over the entire popu-

lation. Averaging Eqs. �1� over realizations of the game and
over the population, we get

�n+1 = �1 − s�un+1/�1 − sn+1� . �6�

Combining Eqs. �5� and �6�, we describe the dynamics of the
vaccination coverage at the population level in the limit of
infinite population, without regards to the individual-level
processes

FIG. 1. Diagram illustrating the evaluation tree for each selfish
individual. An individual that decides to vaccinate �branch �a�� will
judge their choice depending on whether there was an epidemic that
season. If the coverage is equal or greater than the critical coverage
pn��c �branch �a1��, they will conclude that their choice to get
vaccinated that season was not necessary to prevent infection. Oth-
erwise, if the coverage is lower than the critical coverage pn��c

�branch �a2��, they will conclude that their choice was beneficial for
avoiding infection that season. An individual that decides not to
vaccinate that season �branch �b�� will judge their choice based on
whether they were infected. If they do get infected �branch �b1��
they will conclude that their choice of not vaccinating was detri-
mental and that vaccination was necessary for avoiding infection.
Instead, if by chance they avoid infection �branch �b2��, they will
conclude that vaccination was unnecessary.

0.2

0.9

p n

0 50 100 150
0

0.5

I/N

n

0

0.8

0 40 80
0

1

n

(a1) (b1)

(a2) (b2)

FIG. 2. Coverage �i.e., fraction of vaccinated individuals� and
incidence �i.e., fraction of infected individuals� dynamics for a
population of N=105 individuals using a memory parameter s
=0.7 and a probability q�0�=0.8 of getting infected when p=0. �a1�
For �c=0.6, the dynamics of p is approximately cyclic: as p ap-
proaches �c from below, it eventually fluctuates above �c and then
abruptly drops below �c. �b1� For �c=0.6, the dynamics of p is
very well approximated by a period two orbit. �a2� and �b2� The
dynamics of the incidence I /N mirrors that of the coverage. A low
coverage yields a severe incidence, while a high coverage yields a
mild incidence or if p��c epidemics are prevented and therefore
the incidence is zero.
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�n+1 =
s�1 − sn�
1 − sn+1 �n +

1 − s

1 − sn+1 ��1 − �n�q��n�

+ �n�1 − ���n − �c��� . �7�

Our dynamical system is defined on the unit interval �0, 1�.

1. Fixed point analysis

As n→�, the map given by Eq. �7� takes the following
autonomous asymptotic form:

�n+1 = s�n + �1 − s���1 − �n�q��n� + �n�1 − ���n − �c��� .

�8�

Due to the discontinuity at �=�c, we distinguish two
complementary domains: I1= ��c ,1� and I2= �0,�c�. We
emphasize here that the step function ���−�c� is due to the
structure of the evaluation tree, and thus this discontinuity
would still occur in the map even if q�p� were smooth.

Case 1: I1. Equation �8� becomes the following linear
dynamical system:

�n+1 = s�n. �9�

The above dynamical system has no attractors in I1. How-
ever, if we extend the domain to �0, 1�, then the system has a
fixed point at 0 which is a global attractor that belongs to I2.
This fully characterizes the dynamics in I1: orbits in I1 will
be attracted to 0 until they land in I2. In I2 the orbit is
iterated with a different smooth map.

Case 2: I2. We now obtain the following nonlinear dy-
namical system:

�n+1 = �n + �1 − s��1 − �n��− �nq�0�/�c + q�0�� , �10�

that has no fixed points in I2. However, if we extend the
domain to �0, 1�, then the system has two fixed points: 1 and
�c; we denote the fixed point at �c by �*. The derivative of
the map evaluated at 1 is 1+q�0��1−s���c

−1−1��1; thus,
this fixed point is unstable for all the parameter values. �*

=�c is a potential attractor of the system since the derivative
of the map evaluated at �c is

	 = 1 − q�0��1 − s���c
−1 − 1� �11�

with range �−� ,1�. It is important to note that �* lies on the
boundary between I1 and I2. Thus, even though �* does not
belong to I2, �* attracts orbits with initial conditions in I2.
That is, the basin of attraction of �* intersects I2. When 0
�	�1, orbits starting in I2 are immediately attracted from
below to �*, but never reach this fixed point. They only
approach arbitrarily close, always remaining in I2. When
−1�	�0, �* cannot be an attractor because the orbits
would approach �* through damped oscillations and, since
�*��I2, they enter I1 where they are iterated with a differ-
ent smooth component of the map.

2. Bifurcation diagram

A bifurcation diagram for s=0.7, q�0�=0.8 and varying
�c is presented in Fig. 3. For large values of �c, �* is the
only attractor of the map. A rich dynamical behavior is ob-

served for our iterated map with decreasing �c as 	 strictly
decreases with decreasing �c. As expected in piecewise
smooth systems, we observe border-collision bifurcations
�17–23�. A critical period two orbit with elements ��c ,s�c� is
created by a codimension one bifurcation when �c takes the
value 
0= �s+1/ ��1−s�q�0���−10.205; see Fig. 4�a�. The
fixed point �* and the period two orbit become coexisting
attractors; see Fig. 4�b�. With further decreasing �c, the basin
of attraction of the period two orbit increases �24� while the
basin of �* decreases until, when �c equals �1+1/ ��1
−s�q�0���−10.194, 	 becomes zero, the �* attractor is de-
stroyed, and the basin of the period two orbit becomes the
entire domain of the map. With further decreasing �c, period
doubling and chaotic behavior is numerically observed.

3. Effects at large finite N

The dynamics of the expected coverage �n is insufficient
to explain the dynamics of pn. Figure 2�a1� represents a typi-
cal realization of our basic model. We observe that the orbit
of pn slowly approaches �*, abruptly drops to low coverage,

0.2 0.4 0.6

0.2

0.4

0.6

π
c

π

FIG. 3. Bifurcation diagram of the map given by Eq. �7� versus
�c. We have chosen s=0.7 and q�0�=0.8. The dotted line indicates
the approximated position of 
0, the �c value where, due to the
discontinuity of the map, a period two orbit is created. We note that
numerical noise greatly perturbs the dynamics of the piecewise
smooth map since �*��I2. To improve the stability of the numer-
ics, we slightly modified the map in order for �*�I2; in turn, this
slightly changes the threshold value of �c and reduces the �c inter-
val for which the period two orbit and the �* fixed point coexist as
attractors.

π
n

π n+
1

π
n

π n+
1

(a) (b)

(π
c
,π

c
) ≡ π*

I I
2 1

FIG. 4. �a� Schematics of the map when the critical orbit is
created. The map is represented by the thick line. The graphical
iteration of the critical orbit is represented by a loop. The basin of
�* is the whole domain �0, 1�, excluding the points of the period
two orbit. �b� Schematics of the map right after the critical orbit is
created. The basin of �* is the open interval in the shaded area,
while the basin of the period two orbit consists of all the other
points in �0, 1�.
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and then approaches �* again; the dynamics continues in a
series of such cycles. In contrast, �n simply stays close to �*

once n is large enough. We thus investigate aspects of the
dynamics of pn which occur due to the fact that the number
of individuals N is in fact finite, albeit large.

Since the Lyapunov condition is satisfied for the set of
Bernoulli distributions with parameters �w�i� ;1� i�N�, we
apply the central limit theorem. We obtain that
pn=�i=1

N xn
�i� /N �in the limit of large N� is normally

distributed with average �n and standard deviation
��i=1

N �n
�i�2 /N2, where �n

�i� is the standard deviation of the
distribution of xn

�i� �i.e., �n
�i�2=wn

�i��1−wn
�i���. Thus, the dynam-

ics of pn at large finite N can be described by adding realiza-
tions of small amplitude Gaussian noise to the dynamics of
�n. In most of the phase space of �, the noise does not
change the qualitative dynamics of the orbit. However, the
situation becomes critically different as the noisy orbit as-
ymptotically approaches �* from I2. Due to the noise �i.e.,
stochasticity in the mean field due to the finite number of
individuals�, pn may jump above �but close to� �*. According
to Eq. �9�, in the next iteration the orbit lands �i.e., drops� in
I2 in the vicinity of s�c, far from �*=�c; see Fig. 2�a1�.
Then, the orbit is attracted again to �* and undergoes an
apparently periodic dynamics. From the point of view of
dynamical systems, this phenomenon may be called a noise
induced border-collision bifurcation since the presence of
arbitrarily small noise transforms an orbit of a piecewise
smooth map that is asymptotically approaching �* into an
orbit that is expected to be periodic.

The expected periodicity depends on the number of indi-
viduals in the population and can be estimated as follows. At
large N, �n approximates well pn unless a drop in pn oc-
curred. For large n and close to �*, the dynamics of �n can
be approximated as

�* − �n � 	n; �12�

for the parameter values used in Fig. 2�a1�, 	0.840. Since
pn is normally distributed, we expect a jump of the coverage
pn above �* when �*− pn is of the order of the standard
deviation of pn,

�* − pn �

��
i=1

N

�n
�i�2/N

N1/2 . �13�

For large N, as the orbit of pn approaches �c, we expect that
the distribution of w�i� becomes asymptotically independent
of n just before the drop �25�, thus ��i=1

N �n
�i�2 /N approaches

a finite constant. Combining Eqs. �12� and �13� and denoting
ñ as the expected period of the dynamics, we obtain the
following scaling result at large finite N:

ñ � −
ln N

2 ln 	
, �14�

which we have successfully verified through numerics �re-
sults not shown�.

Noise triggers another phenomenon if �c is less but close
enough to 
0. Since the right point of the period two orbit

and �* are close, noise may switch the orbit from the basin
of the period two orbit to the basin of �*, and vice versa.
This is expected when the standard deviation of the noise
�i.e., stochasticity due to the finite number of individuals� is
comparable with the distance between the right point of the
period two orbit and �*. It is straightforward to work out the
condition for this switching phenomena analytically. Similar
phenomena have been previously studied �e.g., �26–28�� as
they are a common occurrence when attractors coexist in
noisy dynamical systems. They are called hopping phenom-
ena or noise-induced crises.

III. MODELS WITH PUBLIC HEALTH INCENTIVES

The basic model predicts that epidemics will not be pre-
vented �1�. Furthermore, severe epidemics are periodically
expected. To prevent major influenza epidemics, incentive-
based vaccination programs could be offered to the public
with the aim of increasing yearly vaccination coverage. Our
model allows for the investigation of two major classes of
incentive-based programs. The first class uses incentives to
correlate vaccination decisions among individuals in the
population in one influenza season. The second class uses
incentives to correlate vaccination decisions for the same in-
dividual over many influenza seasons. Thus, we introduce
two additional inductive reasoning games in order to evalu-
ate the potential effects of the following two incentives ap-
plied to the basic model:

Incentive 1. If the head of the family �HF� pays to get
vaccinated then their family will get vaccinated for free.

Incentive 2. If an individual pays to get vaccinated then
that individual will get free vaccinations for a specified num-
ber of successive years.

Incentive 1 belongs to the first class of incentive-based
vaccination programs, while incentive 2 belongs to the sec-
ond class of incentive-based vaccination programs. We fol-
low our previous strategy, deriving and analyzing mean-field
approximations. Then, we discuss first order deviations from
the mean field, exploring first order effects of fluctuations.

A. Public health incentive 1

1. Model description

We consider that the population of N individuals is now
divided into F groups representing families. Each family
contains C members and one individual in each family acts
as it’s head. The incentive offers free vaccination to a family
if the head of that family paid for his/her vaccination. Only
the heads of the families make vaccination decisions and
they track the vaccination experience for all of their family
members. The sole interest of the HF is to protect their fam-
ily members from infection, preferably without getting any-
one in their family vaccinated. It is very important to note
that, as a consequence of this public health program, the
vaccination coverage of the HFs equals the population-level
vaccination coverage. We specify the model using a set of
eight assumptions. The first five assumptions are the same as
in the basic model now applied to HFs who are the decision
makers, the other three assumptions are as follows.
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�6� The infection event of an individual j �j=1, . . . ,N; i.e.,
the individual may or may not be a HF� in year n, zn

�j�, is the
realization of a stochastic variable. �If individual i got in-
fected in season n then zn

�j�=1, otherwise zn
�j�=0.� If xn

�j�=1,
then zn

�j�=0. If xn
�j�=0, then zn

�j� is the realization of a Ber-
noulli variable with parameter q�pn�, where pn=� j=1

N xn
�j� /N is

the coverage achieved that year. That is, if individuals vac-
cinate, they are fully protected, otherwise they risk infection
with probability q�pn�.

�7� �xn
�i� ;1� i�F� and �zn

�i� ;1� i�F� determine vn+1
�i� as

follows �see Fig. 5�. We have C+3 cases: �a1� if xn
�i�=1 and

�c� pn, then vn+1
�i� =svn

�i�; that is, if HF i gets their family
�including themselves� vaccinated in season n and no epi-
demic occurs, then the HF considers that the vaccination was
unnecessary; �a2� if xn

�i�=1 and pn��c, then vn+1
�i� =svn

�i�+C;
which means that if HF i gets their family �including them-
selves� vaccinated in season n and an epidemic occurs,
then the HF considers that the vaccination was
necessary for all the family members; �bk� if xn

�i�=0 and
k family members �k=0, . . . ,C� have zn

�l,i�=1 �where
l=1, . . . ,C labels the family member�, then vn+1

�i� =svn
�i�+k;

that is, if HF i does not get vaccinated in season n and k
members of their family �including themselves� get infected,
then the HF adjusts his/her provaccination experience by ac-
counting for the number of their family members that were
infected.

�8� The probability that an HF chooses to vaccinate is
updated as follows:

wn+1
�i� = vn+1

�i� /�C�1 − sn+1�/�1 − s�� . �15�

That is, an HF’s probability to vaccinate �and get their fami-
lies vaccinated� in the next season is given by the updated

cumulative vaccination experience. We have normalized vn+1
�i�

by C�1−sn+1� / �1−s� because this factor is the maximum
possible value for vn+1

�i� if HF i and their family would have
benefited from vaccination in all of the n influenza seasons.

Previously reported numerics of this model are shown in
Fig. 6�a�; see �1� for details. Apparently, the family incentive
increased the frequency of severe epidemics: compared to
the basic model the coverage drops below �c more often.
The following analysis aims to provide an understanding of
the coverage dynamics shown in Fig. 6�a�.

2. Model analysis

Following the HF evaluation tree shown in Fig. 5 we
obtain

Branch Expected population fraction Average v�i� update

�a1,2� �n 	vn+1
�i� 
 = s	vn

�i�

+ C�1 − ���n − �c��

�bk� �1 − �n�Qk��n� 	vn+1
�i� 
 = s	vn

�i�
 + k ,

�16�

where Qk��� is the probability that k members get infected
with influenza in an unvaccinated family when the expected
coverage is �. The probability that a single individual gets
infected in a season with expected coverage � is q���. Since
infection takes place through mass action �29�, the probabil-
ity that k members of a family get infected is binomial

Qk��� = �C

k
�q���k�1 − q����C−k. �17�

Substituting Eq. �17� into �16� and averaging over all
branches, we obtain

FIG. 5. Schematics illustrating the evaluation tree for each fam-
ily head. A family head that decides to vaccinate themselves and
their family �branch �a�� will judge their choice depending on
whether there was an epidemic that season. If the coverage was
equal or greater than the critical coverage pn��c �branch �a1��,
they will conclude that their choice to get vaccinated �and have
their families vaccinated� that season was unnecessary for prevent-
ing infection. Otherwise, if the coverage was lower than the critical
coverage pn��c �branch �a2��, they will conclude that their choice
was beneficial for avoiding infection that season. A family head that
decides not to vaccinate themselves and their family �branch �b��
will judge their choice based on how many of their family members
were infected. If k members get infected �branch �bk��, they will
conclude that vaccination was necessary only for k members of
their family.
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0 50 100 150
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FIG. 6. Coverage dynamics for two public health incentives in a
population of N=105 noncommunicating selfish individuals using a
memory parameter s=0.7, a critical coverage �c=0.6, and a prob-
ability q�0�=0.8 of getting infected when the coverage p=0. �a�
The head of the family makes the decision as to whether or not their
family vaccinates. The coverage dynamics when the family size is
eight �C=8� is shown in black; the coverage dynamics when indi-
viduals make vaccination decisions independently is shown in gray
for comparison. Similar results were obtained for family sizes of
two and four. �b� Individuals that pay for one vaccination are given
three extra years of vaccination �y=3�; the coverage dynamics is
shown in black and it’s time average is ameliorated. The coverage
dynamics when individuals pay for every year of vaccination is
shown in gray for comparison.

BREBAN, VARDAVAS, AND BLOWER PHYSICAL REVIEW E 76, 031127 �2007�

031127-6



un+1 = sun + C�n�1 − ���n − �c�� + Cq��n��1 − �n� .

�18�

Averaging over Eq. �15� we obtain

�n+1 = un+1/�C�1 − sn+1�/�1 − s�� . �19�

The fixed point analysis of the above dynamical system
follows similarly to that of the basic model and yields similar
results. As in the case of the basic model, �*=�c plays a
crucial role in determining the dynamics. The left derivative
of the coverage map at �* �i.e., 	� is the same as in the basic
model. The expected periodicity formula is similar to that
found for the basic model �Eq. �14�� except that in this case
the number of HF �F=N /C� determines the periodicity in-
stead of the total number of individuals �N�. The expected
periodicity can be expressed as a function of the family size
C,

ñ�C� � −
ln F

2 ln 	
, �20�

where for C=1 we recover Eq. �14�. We now compare the
expected periodicity of major epidemics for C�1 to that for
C=1 �i.e., basic model�. We use the same values of s, �c, and
q�0� such that orbits in both models approach �* from I2.
The ratio of the expected periodicities is given by

ñ�C�/ñ�1� � �1 −
ln C

ln N
� � 1. �21�

Hence, the family-based incentive increases the frequency of
major influenza epidemics and decreases the time average of
the coverage.

B. Public health incentive 2

1. Model description

An individual who pays to participate in the second vac-
cination program receives an influenza vaccination for the
current year and for y successive years. Although the indi-
viduals that are enrolled in the program do not make vacci-
nation decisions, they consider the necessity of vaccination
every year. At the end of the free vaccination period, they use
their evaluations to decide whether to pay for another enroll-
ment. The model uses assumptions �1� through �7� of the
basic model. Assumption �8� is modified as follows.

�8� The probability that an individual gets vaccinated is
updated as follows:

�i� If the individual decides not to vaccinate in season n
�i.e., xn

�i�=0�, then

wn+1
�i� = vn+1

�i� /��1 − sn+1�/�1 − s�� . �22�

�ii� Otherwise, the individual decides to vaccinate in sea-
son n �i.e., xn

�i�=1�. In this case, wn+r
�i� =1 for 0�r�y, and, in

season �n+y+1�,

wn+y+1
�i� = vn+y+1

�i� /��1 − sn+y+1�/�1 − s�� . �23�

That is, after vaccinating in season n, and taking advan-
tage of y seasons of free vaccination, the individual resumes

his/her adaptive behavior in season �n+y+1�.
Figure 6�b� shows previously reported numerics of the

model with the second incentive; see �1� for discussion of the
numerics. We note a qualitative change in the orbit of p;
thus, the second incentive can potentially ameliorate epidem-
ics. Our analysis aims to provide an understanding of the
coverage dynamics in Fig. 6�b�.

2. Model analysis

We now introduce notation to describe the analysis of the
model. We use the superscript r to specify the individual-
level parameters for individuals that have r vaccinations left.
Nn

r �0�r�y� denotes the expected number of individuals
that have r vaccination years left in season n; �r=0

y Nn
r =N.

The ratio between the number of individuals with r vaccina-
tion years that vaccinate in season n and Nn

r is denoted by
�n

r . Since we assume that all individuals complete the free
vaccination program, �n

r =1 if r�0. The expected
population-level coverage can be written as

�n =
1

N
�
r=0

y

Nn
r�n

r . �24�

Given �n
0 we can write a dynamical system for Nn

r

Nn+1
0 = Nn

1 + �1 − �n
0�Nn

0,

Nn+1
r = Nn

r+1 for 0 � r � y ,

Nn+1
y = �n

0Nn
0. �25�

The number of individuals that will decide to participate in
the program the next year �Nn+1

0 � is given by the number of
individuals that finished their vaccination program �Nn

1� and
the individuals that did not enroll in the vaccination program
in the current year ��1−�n

0�Nn
0�. The number of individuals

with r �0�r�y� years left in the program next year �Nn+1
r � is

given by the number of individuals with r+1 years left in the
program in the current year. The number of individuals with
y years left in the program in the next year �Nn+1

y � is given by
the number of individuals that participate in the vaccination
program in the current year ��n

0Nn
0�.

The vaccination behavior of the individuals participating
in the vaccination program �i.e., r�0� is simple: they vacci-
nate every year

wn
r�i� = 1. �26�

However, they still evaluate the necessity of vaccination each
year and update their provaccination variable v depending on
whether or not there was an influenza epidemic each year

vn+1
r�i� = svn

r�i� + 1 − ��pn − �c� . �27�

The individuals that are not participating in the vaccination
program need to decide whether or not to vaccinate each
year. The individual-level probabilities for vaccinating get
updated as in the basic model
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wn+1
0�i� = vn+1

0�i� /��1 − sn+1�/�1 − s�� . �28�

The evaluation of the vaccination decisions is the same as in
the basic model; see Fig. 1. Following the evaluation tree in
Fig. 1 we obtain

Branch Expected population fraction Average v0�i� update

�a1,2� �n
0 	vn+1

0�i�
 = s	vn
0�i�
 + 1

− ���n − �c�
�b1� �1 − �n

0�q��n� 	vn+1
0�i�
 = s	vn

0�i�
 + 1

�b2� �1 − �n
0��1 − q��n�� 	vn+1

0�i�
 = s	vn
0�i�


�29�

We now present mean-field equations for our model with
the second incentive. Dividing Eqs. �25� by N, we get a set of
equations for n

r �Nn
r /N which are intensive quantities. Fur-

thermore, applying the steps in Sec. II on Eqs. �29�, we ar-
rive at the following dynamical system:

n+1
0 = n

1 + �1 − �n
0�n

0, �30�

n+1
r = n

r+1 for 0 � r � y , �31�

n+1
y = �n

0n
0, �32�

un+1
0 = sun

0 + �1 − �n
0�q��n� + �n

0�1 − ���n − �c�� , �33�

un+1
r = sun

r + 1 − ���n − �c� for 0 � r � y , �34�

�n+1
0 = �1 − s�un+1

0 /�1 − sn+1� , �35�

�n+1
r = 1 for 0 � r � y , �36�

where

�n � �
r=0

y

n
r�n

r , �37�

and

�
r=0

y

n
r = 1. �38�

The dynamical system simplifies since the equations for
ur �0�r�y� and �r �0�r�y� are decoupled, and 0 can
be eliminated using the constraint �38�. We thus obtain

n+1
r = n

r+1 for 0 � r � y , �39�

n+1
y = un

0� 1 − s

1 − sn��1 − �
r=1

y

n
r� , �40�

un+1
0 = sun

0 + �1 − un
0� 1 − s

1 − sn��q��n�

+ un
0� 1 − s

1 − sn��1 − ���n − �c�� , �41�

where

�n � F�n
1, . . . ,n

y,un
0� � un

0� 1 − s

1 − sn�
+ �1 − un

0� 1 − s

1 − sn���
r=1

y

n
r . �42�

We write the state of the system as �n
1 , . . . ,n

y ,un
0�; the do-

main of the dynamical system is D= �0,1�y � �0,1 / �1−s��.
Fixed point analysis. Due to discontinuity

at �=�c, we distinguish two complementary
domains: D1= ��1 , . . . ,y ,u0� �F�1 , . . . ,y ,u0���c� and
D2= ��1 , . . . ,y ,u0� �F�1 , . . . ,y ,u0���c�.

Case 1. D1. In the limit n→�, Eqs. �39�–�41� become the
following dynamical system;

n+1
r = n

r+1 for 0 � r � y , �43�

n+1
y = un

0�1 − s��1 − �
r=1

y

n
r� , �44�

un+1
0 = sun

0, �45�

which has no attractors in D1. However, if we extend the
domain to D, then the system has a fixed point in D2 at
�0,…,0�. This fixed point is an attractor since the Jacobian of
the dynamical system evaluated at �0,…,0� has one eigen-
value equal to s �0�s�1� and j eigenvalues equal to 0. The
attractor is global since u0 is decreasing, corresponds to the
situation where no individual vaccinates, and fully character-
izes the dynamics in D1: orbits in D1 will be attracted to
�0,…,0� until they land in D2. In D2, the orbit is iterated with
a different smooth map.

Case 2: D2. We now obtain the following dynamical sys-
tem:

n+1
r = n

r+1 for 0 � r � y , �46�

n+1
y = un

0�1 − s��1 − �
r=1

y

n
r� , �47�

un+1
0 = un

0 + �1 − un
0�1 − s��q��n� , �48�

that has no fixed points in D2. However, if we extend the
domain to D, then the system has two fixed points. The first
fixed point is

��y + 1�−1,�y + 1�−1, . . . ,�y + 1�−1,�1 − s�−1� �49�

and corresponds to the situation where everybody vaccinates
�i.e., �=1�. It can be shown straightforwardly that 1+q�0�
��1−s���c

−1−1� and 1 are eigenvalues of the Jacobian of the
system at this fixed point; thus, the fixed point is unstable.
The second fixed point of the extended system is

�* = ��c/�y + 1�,�c/�y + 1�, . . . ,�c/�y + 1�,�c/�1 − s�/�1 + y�1

− �c��� �50�

corresponding to �=�c. The fixed point may be interpreted
as follows. The population of N individuals is divided into
two groups. The individuals in the first group never vaccinate
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while those in the second group always vaccinate. The num-
ber of individuals that vaccinate keep the vaccination cover-
age � at �c every year and always feel motivated to get
vaccinated. This implies that the r �0�r�y� values of �*

are all the same. 0=1−y�c / �y+1� includes both individuals
that never vaccinate and individuals that just finished a vac-
cination program and will participate in a new one. The in-
dividuals who do not vaccinate do not get infected because
�=�c and always benefit from herd immunity. The charac-
teristic equation at �* is analytically intractable. However, it
can be established numerically that �* is a potential attractor
of the map defined for D2 when the domain is extended to D.
For the dynamical system describing the basic model with
superimposed public health incentive 2 �Eqs. �39�–�41��, �*

may be attracting from D2 since �* is on �D2 and the basin
of �* intersects D2; �* is asymptotically approached, yet
never reached.

Bifurcation diagram. At high values of �c, the orbits are
attracted to �* which yields �=�c. With decreasing �c, a
border collision bifurcation occurs. At a particular value of
�c, a critical periodic orbit is created in phase space which
with further decreasing �c turns into a periodic attractor �see
Fig. 7�. Denoting the kth iterate of the �y+1�-dimensional
map given by Eqs. �39�–�41� by My

�k�, the equation of the
critical orbit is

My
�k���̂;�c� = �̂ . �51�

Equation �51� may be understood as follows. For a hypersur-
face in the parameter space, a point �̂��D2 �having �=�c�
is reached in a finite number of iterates; �̂ is first iterated
with the smooth map that applies in D1 and the orbit lands in
D2, then the orbit is evolved with the smooth map that ap-
plies in D2 for �k−1� iterates until �̂ is reached again. Equa-
tion �51� and F��̂�=�c can be simultaneously solved for �̂
and 
y, the value of �c where the critical orbit is created. For
values of �c in the neighborhood of 
y ��c�
y�, the critical
periodic orbit turns into a periodic attractor. It is important to
note that, except at �c=
y, the periodic attractor is bounded
away from �D2, and is robust to arbitrarily small noise. As an

illustration, we choose y=1, s=0.7, �c=0.6, and q�0�=0.8.
Figure 7 presents the bifurcation diagram of the map with
these parameters and varying �c. We numerically solve the
equations for the critical orbit with k=5 and obtain the
threshold value of �c, 
10.435 in agreement with Fig. 7
�30�. Figure 7 also shows the positions of 
0, 
2, and 
3
relative to the bifurcation diagram of M1. We note that 
y
increases with y increasing from 0 to 3 and even further
�results not shown�.

3. Biological implications of the bifurcation structure

These results provide insights in the potential impact of
public health incentives. In particular, the study of these
codimension one border collision bifurcations is critical for
understanding the effect of public health incentive 2. In prac-
tice, it would be unlikely that �c and/or s are parameters that
can be easily changed since the critical vaccination coverage
�c is strongly determined by the transmissibility and viru-
lence of the viral strain, and the memory parameter s is a
feature of the individuals. On the other hand, the number of
prepaid vaccinations y would be a parameter of the incentive
2 that is easy to change. Since 
y increases with y, for given
s, �c, and q�0�, there exists a threshold value of y �which we
denote Y� such that the orbits of the dynamical system with
parameters y=Y −1, s, �c, and q�0� are attracted to the cor-
responding �* �i.e., to �=�c�. Such orbits are very sensitive
to noise �i.e., display severe epidemics�, while orbits of the
dynamical system with parameters y=Y, s, �c, and q�0� go
to a period k attractor which is robust to noise �severe epi-
demics might be prevented�. For example, for s=0.7, �c
=0.6, and q�0�=0.8, we obtain Y =3 and k=6; see Fig. 6�b�.
This phenomenon is very important since it establishes a
threshold value for the number of prepaid vaccinations such
that incentive 2 makes a qualitative difference in the dynam-
ics of the mean-field coverage. In this case, public health
incentive 2 may be very effective in ameliorating influenza
epidemics; see Fig. 6�b�. For discussion of other possible
public health benefits of incentive 2 see Ref. �1�.

IV. DISCUSSION AND CONCLUSIONS

In the United States, influenza vaccination is voluntary
and the demand for influenza vaccines �70 to 75 million
vaccine doses per season� is generally met. The vaccine is
very effective in offering protection �31�. However, due to
evolution of the virus and waning immunity, the vaccine is
good only for one influenza season. In recent years, the vac-
cination coverage has steadily increased, reaching values be-
tween 20% to 25% �32,33�. Although these values have in-
creased they suggest that the current vaccination programs
are not very effective. Therefore, every year, up to 25% of
the United States population is infected with influenza �10�
causing 36 000 deaths �33,34�. One of the national health
objectives of the United States is to further increase the vac-
cination coverage �32,33� which currently is below the
Healthy People 2010 objective �35�. Therefore, it is impor-
tant to understand the vaccination dynamics and to identify
incentives that could be used to increase the vaccination cov-
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FIG. 7. Bifurcation diagram of the dynamical system given by
Eqs. �39�–�41� versus �c �y=1, s=0.7 and q�0�=0.8�. The dotted
lines, from left to right, indicate the approximated position of 
0

0.205 �k=2�, 
10.435 �k=5�, 
20.551 �k=5�, and 
3

0.647 �k=6�. The dashed line marks our chosen value of �c

=0.6. In this case, incentive 2 with y=1 or y=2 does not induce a
qualitative change in the dynamics of the coverage, while for y=3
such a change occurs through a border-collision bifurcation.
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erage and to control influenza epidemics. Our mean-field
analyses sheds considerable light on how to increase the
yearly influenza vaccination coverage.

Our previous analyses based on simulations �1�, have
shown that even without the introduction of pandemic strains
severe influenza epidemics cannot be prevented unless
incentive-based vaccination programs are offered. During the
years where epidemics are not prevented, the vaccination
coverage tends to increase: individuals that did vaccinate
continue to do so in successive years while those that re-
mained susceptible might have become infected and conse-
quently begin to vaccinate. However, once the coverage has
reached the critical level and an epidemic is prevented, many
vaccinating individuals decide to try to take advantage of
herd immunity and avoid infection without getting vacci-
nated. This results in the reoccurrence of a severe influenza
epidemic and the cycle repeats. To understand these dynam-
ics we have analyzed our model by formulating mean-field
equations. However, we have found that mean-field dynam-
ics were able to reproduce the simulations at biologically
plausible parameter values only when first order effects of
the fluctuations were included. Therefore, our analysis shows
that, for realistic parametrization, the coverage dynamics of
our model is driven by stochasticity. Interestingly, mean-field
analysis also shows that for low enough critical vaccination
coverages the dynamics undergoes a border-collision bifur-
cation. At this point, the coverage follows a periodic orbit
and the dynamics becomes robust to fluctuations. However,
we note that the transition between fluctuation-sensitive and
fluctuation-robust dynamics occurs at very small critical vac-
cination coverages that are biologically implausible for influ-
enza.

We have also studied the potential impact of two public
health incentives on our model. The first incentive, which
leaves the vaccination decision to the head of the family,
reveals similar coverage dynamics as that found for the basic
model for the same individual-level and epidemiological pa-
rameters. However, compared to the basic model the magni-
tude of the fluctuations in the coverage dynamics are larger.
The reason is that the number of independent decision mak-
ers is reduced since family members follow the vaccination
decision of the head of family. Larger fluctuations increase
the frequency at which the coverage exceeds the critical vac-
cination coverage and triggers a severe epidemic. Thus, se-
vere epidemics occur more frequently.

The second public health incentive that we have studied is
based on prepayment of vaccination. In this case, mean-field
analysis of our model explains why this incentive can be
used to prevent severe influenza epidemics. Compared to the
basic model, the border-collision bifurcation occurs at a
larger critical coverage, that increases with the duration of

the prepaid period. When the bifurcation occurs the coverage
dynamics fundamentally change from fluctuation sensitive to
fluctuation robust. For a value of the critical coverage in
agreement with the literature �11–14�, we found that an in-
centive requiring prepayment for 3 years of vaccination
would induce a border-collision bifurcation. The resulting
fluctuation-robust dynamics yields a vaccination coverage
that remains close to the critical level. Thus, this incentive
could be used to alleviate the severity of yearly influenza
epidemics. At the individual level, these results can be un-
derstood from the close relationship between the length of
the vaccination program and the time scale of the memory
parameter �s; s=0.7 determines a half-life of 1.9 years�. Ev-
ery year a fraction of the population leave the vaccination
program and will consider whether or not they should renew
their enrollment. Individuals who decide not to renew their
participation in the program could become infected, and
therefore may reenroll the following year. This produces a
high turnover in the number of participants that enroll in the
vaccination program every year. Since the time scale of the
program is comparable to that of the memory parameter,
when they next leave the program, those individuals that
were previously infected will benefit from their past influ-
enza experiences before enrollment to decide whether or not
they should further reenroll.

By formulating a model that combines human cognition
and vaccination behavior with influenza epidemiology and
conducting a mean-field analysis we have obtained results
that may be useful in guiding public health policy in the
event of an influenza pandemic. Our findings show that se-
vere influenza epidemics cannot be prevented unless vacci-
nation programs offer incentives. We found that a public
health intervention program that focuses on vaccinating
families is likely to increase the frequency of severe epidem-
ics. However, this frequency could be reduced if programs
provide, as an incentive to vaccinate, several years of free
vaccines to individuals who pay for 1 year of vaccination.
Notably, our analysis shows that there exists a threshold for
the number of years of vaccination that should be offered. At
or above this threshold severe epidemics would be pre-
vented. Therefore, our analysis provides a practical method
for identifying how many years of free vaccination the in-
centive should provide in order to successfully ameliorate
influenza epidemics.
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